692 research outputs found

    Polar Codes: Robustness of the Successive Cancellation Decoder with Respect to Quantization

    Get PDF
    Polar codes provably achieve the capacity of a wide array of channels under successive decoding. This assumes infinite precision arithmetic. Given the successive nature of the decoding algorithm, one might worry about the sensitivity of the performance to the precision of the computation. We show that even very coarsely quantized decoding algorithms lead to excellent performance. More concretely, we show that under successive decoding with an alphabet of cardinality only three, the decoder still has a threshold and this threshold is a sizable fraction of capacity. More generally, we show that if we are willing to transmit at a rate δ\delta below capacity, then we need only clog(1/δ)c \log(1/\delta) bits of precision, where cc is a universal constant.Comment: In ISIT 201

    Near-Optimal Active Learning of Halfspaces via Query Synthesis in the Noisy Setting

    Full text link
    In this paper, we consider the problem of actively learning a linear classifier through query synthesis where the learner can construct artificial queries in order to estimate the true decision boundaries. This problem has recently gained a lot of interest in automated science and adversarial reverse engineering for which only heuristic algorithms are known. In such applications, queries can be constructed de novo to elicit information (e.g., automated science) or to evade detection with minimal cost (e.g., adversarial reverse engineering). We develop a general framework, called dimension coupling (DC), that 1) reduces a d-dimensional learning problem to d-1 low dimensional sub-problems, 2) solves each sub-problem efficiently, 3) appropriately aggregates the results and outputs a linear classifier, and 4) provides a theoretical guarantee for all possible schemes of aggregation. The proposed method is proved resilient to noise. We show that the DC framework avoids the curse of dimensionality: its computational complexity scales linearly with the dimension. Moreover, we show that the query complexity of DC is near optimal (within a constant factor of the optimum algorithm). To further support our theoretical analysis, we compare the performance of DC with the existing work. We observe that DC consistently outperforms the prior arts in terms of query complexity while often running orders of magnitude faster.Comment: Accepted by AAAI 201

    How to Achieve the Capacity of Asymmetric Channels

    Full text link
    We survey coding techniques that enable reliable transmission at rates that approach the capacity of an arbitrary discrete memoryless channel. In particular, we take the point of view of modern coding theory and discuss how recent advances in coding for symmetric channels help provide more efficient solutions for the asymmetric case. We consider, in more detail, three basic coding paradigms. The first one is Gallager's scheme that consists of concatenating a linear code with a non-linear mapping so that the input distribution can be appropriately shaped. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Furthermore, we derive a scaling law between the gap to capacity, the cardinality of the input and output alphabets, and the required size of the mapper. The second one is an integrated scheme in which the code is used both for source coding, in order to create codewords distributed according to the capacity-achieving input distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third paradigm is based on an idea of B\"ocherer and Mathar, and separates the two tasks of source coding and channel coding by a chaining construction that binds together several codewords. We present conditions for the source code and the channel code, and we describe how to combine any source code with any channel code that fulfill those conditions, in order to provide capacity-achieving schemes for asymmetric channels. In particular, we show that polar codes, spatially coupled codes, and homophonic codes are suitable as basic building blocks of the proposed coding strategy.Comment: 32 pages, 4 figures, presented in part at Allerton'14 and published in IEEE Trans. Inform. Theor

    Construction of Polar Codes with Sublinear Complexity

    Full text link
    Consider the problem of constructing a polar code of block length NN for the transmission over a given channel WW. Typically this requires to compute the reliability of all the NN synthetic channels and then to include those that are sufficiently reliable. However, we know from [1], [2] that there is a partial order among the synthetic channels. Hence, it is natural to ask whether we can exploit it to reduce the computational burden of the construction problem. We show that, if we take advantage of the partial order [1], [2], we can construct a polar code by computing the reliability of roughly a fraction 1/log3/2N1/\log^{3/2} N of the synthetic channels. In particular, we prove that N/log3/2NN/\log^{3/2} N is a lower bound on the number of synthetic channels to be considered and such a bound is tight up to a multiplicative factor loglogN\log\log N. This set of roughly N/log3/2NN/\log^{3/2} N synthetic channels is universal, in the sense that it allows one to construct polar codes for any WW, and it can be identified by solving a maximum matching problem on a bipartite graph. Our proof technique consists of reducing the construction problem to the problem of computing the maximum cardinality of an antichain for a suitable partially ordered set. As such, this method is general and it can be used to further improve the complexity of the construction problem in case a new partial order on the synthetic channels of polar codes is discovered.Comment: 9 pages, 3 figures, presented at ISIT'17 and submitted to IEEE Trans. Inform. Theor

    The Space of Solutions of Coupled XORSAT Formulae

    Full text link
    The XOR-satisfiability (XORSAT) problem deals with a system of nn Boolean variables and mm clauses. Each clause is a linear Boolean equation (XOR) of a subset of the variables. A KK-clause is a clause involving KK distinct variables. In the random KK-XORSAT problem a formula is created by choosing mm KK-clauses uniformly at random from the set of all possible clauses on nn variables. The set of solutions of a random formula exhibits various geometrical transitions as the ratio mn\frac{m}{n} varies. We consider a {\em coupled} KK-XORSAT ensemble, consisting of a chain of random XORSAT models that are spatially coupled across a finite window along the chain direction. We observe that the threshold saturation phenomenon takes place for this ensemble and we characterize various properties of the space of solutions of such coupled formulae.Comment: Submitted to ISIT 201
    corecore